辻 寛之

原著論文(査読付き)

  • Kawai, T., Akahoshi, R., Shelley, I.J., Kojima, T., Sato, M., Tsuji, H., Inukai, Y. (2022) Auxin Distribution in Lateral Root Primordium Development Affects the Size and Lateral Root Diameter of Rice. Front. Plant Sci. 13. 834378.
  • Sakamoto, Y., Ishimoto, A., Sakai, Y., Sato, M., Nishihama, R., Abe, K., Sano, Y., Furuichi, T., Tsuji, H., Kohchi, T., Matsunaga, S. (2022) Improved clearing method contributes to deep imaging of plant organs. Commun. Biol. 5. 22.
  • Sato, M., Akashi, H., Sakamoto, Y., Matsunaga, S., Tsuji, H. (2022) Whole-Tissue Three-Dimensional Imaging of Rice at Single-Cell Resolution. Int. J. Mol. Sci. 23, 40.
  • Yoshida, A., Taoka, K.-I., Hosaka, A., Tanaka, K., Kobayashi, H., Muranaka, T., Toyooka, K., Oyama, T., Tsuji, H. (2021) Characterization of Frond and Flower Development and Identification of FT and FD Genes From Duckweed Lemna aequinoctialis Nd. Front. Plant Sci. 12: 2088.
  • Rattanawong, K., Koiso, N., Toda, E., Kinoshita, A., Tanaka, M., Tsuji, H., Okamoto, T. (2021) Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. Plant J. 108,1097–1115.
  • Taoka, K., Tsuji, H., Anzawa, S., Enomoto, M., Koizumi, Y., Nakamura, J., Tanaka, M., Fujita, A., Furuita, K., Kodama, T.S., Fujimoto, M., Kurokawa, K., Okamoto, T., Fujiwara T., Nakano, A., Kojima, C. (2021) Liquid-liquid phase separation of florigen activation complex induces flowering bioRxiv https://doi.org/10.1101/2021.08.19.456992
  • Behnam B, Higo A, Yamaguchi K, Tokunaga H, Utsumi, Y, Selvaraj MG, Seki M, Ishitani M, Becerra Lopez-Lavalle LA, Tsuji H. (2021) Field‐transcriptome analyses reveal developmental transitions during flowering in cassava (Manihot esculenta Crantz). Plant Mol. Biol. 106: 285-296.
  • Taoka K, Shimatani Z, Yamaguchi K, Ogawa M, Saitoh H, Ikeda Y, Akashi H, Terada R, Kawasaki T, Tsuji H. (2021) Novel assays to monitor gene expression and protein-protein interactions in rice using the bioluminescent protein, NanoLuc. Plant Biotechnol. 38: 89-99.
  • Hasegawa T, Lucob-Agustin N, Yasufuku K, Kojima T, Nishiuchi S, Ogawa A, Takahashi-Nosaka M, Kano-Nakata M, Inari-Ikeda M, Sato M, Tsuji H, Wainaina CM, Yamauchi A, Inukai Y. (2021) Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. Plant Sci. 306: 110861.
  • Higo A, Saihara N, Miura F, Higashi Y, Yamada M, Tamaki S, Ito T, Tarutani Y, Sakamoto T, Fujiwara M, Kurata T, Fukao Y, Moritoh S, Terada S, Kinoshita T, Ito T, Kakutani T, Shimamoto K, Tsuji H. (2020) DNA methylation is reconfigured at the onset of reproduction in rice shoot apical meristem. Nat. Commun. 11: 4079.
  • Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri N, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, Venturini L, Bevan M, Clavijo B, Koo DH, Ens J, Wiebe K, N’Daiye A, Fritz AK, Gutwin C, Fiebig A, Fosker C, Fu BX, Accinelli GG, Gardner KA, Fradgley N, Gutierrez-Gonzalez J, Halstead-Nussloch G, Hatakeyama M, Koh CS, Deek J, Costamagna AC, Fobert P, Heavens D, Kanamori K, Kawaura K, Kobayashi F, Krasileva K, Kuo T, McKenzie N, Murata K, Nabeka Y, Paape T, Padmarasu S, Percival-Alwyn L, Kagale S, Scholz W, Sese J, Juliana P, Singh R, Shimizu-Inatsugi R, Swarbreck D, Cockram J, Budak H, Tameshige T, Tanaka T, Tsuji H, Wright J, Wu J, Steuernagel B, Small I, Cloutier S, Keeble- Gagnere G, Muehlbauer G, Tibbets J, Nasuda S, Melonek J, Hucl PJ, Sharpe A, Clark M, Legg E, Bharti A, Langridge P, Hall A, Uauy C, Mascher M, Krattinger SG, Handa H, Shimizu KK, Distelfeld A, Chalmers K, Keller B, Mayer KFX, Poland J, Stein N, McCartney CA, Spannagl M, Wicker T, Pozniak CJ. (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588: 277-283.
  • Shimizu KK, Copetti D, Okada M, Wicker T, Tameshige T, Hatakeyama M, Shimizu-Inatsugi R, Aquino C, Nishimura K, Kobayashi F, Murata K, Kuo T, Delorean E, Poland J, Haberer G, Spannagl M, Mayer KFX, Gutierrez-Gonzalez J, Muehlbauer GJ, Monat C, Himmelbach A, Padmarasu S, Mascher M, Walkowiak S, Nakazaki T, Ban T, Kawaura K, Tsuji H, Pozniak C, Stein N, Sese J, Nasuda S, Handa H. (2020) De novo genome assembly of the Japanese wheat cultivar Norin 61 highlights functional variation in flowering time and Fusarium-resistance genes in East Asian genotypes. Plant Cell Physiol. 62: 8-27.
  • Nagai K, Mori Y, Ishikawa S, Furuta T, Gamuyao R, Niimi Y, Hobo T, Fukuda M, Kojima M, Takebayashi Y, Fukushima A, Himuro Y, Kobayashi M, Ackley W, Hisano H, Sato K, Yoshida A, Wu J, Sakakibara H, Sato Y, Tsuji H, Akagi T, Ashikari M. (2020) Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584: 109-114.
  • Tokunaga H, Quynh D.T.N, Anh N.H, Nhan P.T, Matsui A,Takahashi S, Tanaka M, Anh N.M, Van D.G, Ham L.H, Higo A, Hoa T.M, Ishitani M, Minh N.B.N, Hy N.H, Srean P, Thu V.A, Tung N.B, Vu N.A, Yamaguchi K, Tsuji H, Utsumi Y, Seki M. (2020) Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia. Plant Mol. Biol.
    doi:10.1007/s11103-020-01057-0.
  • Hirayama T, Saisho D, Matsuura T, Okada S, Takahagi K, Kanatani A, Ito J, Tsuji H, Ikeda Y, Mochida K. (2020) Life-course monitoring of endogenous phytohormone levels under field conditions reveals diversity of physiological states among barley accessions. Plant Cell Physiol. 61: 1438-1448.
  • Toda Y, Okura F, Ito J, Okada S, Kinoshita T, Tsuji H, Saisho D. (2020) Training instance segmentation neural network with synthetic datasets for crop seed phenotyping. Commun. Biol. 3: 173.
  • Lucob-Agustina N, Kawai T, Takahashi-Nosaka M, Kano-Nakata M, Wainaina CM, Hasegawa T, Inari-Ikeda M, Sato M, Tsuji H, Yamauchi A, Inukai Y. (2020) WEG1, which encodes a cell wall hydroxyproline-rich glycoprotein, is essential for parental root elongation controlling lateral root formation in rice. Physiol Plant. 169: 214-227.
  • Aoki S, Toh S, Nakamichi N, Hayashi Y, Wang Y, Suzuki T, Tsuji H, Kinoshita T. (2019) Regulation of stomatal opening and histone modification by photoperiod in Arabidopsis thaliana. Sci. Rep. 9: 10054.
  • Behnam B, Bohorquez‐Chaux A, Castaneda‐Mendez OF, Tsuji H, Ishitani H, Lopez‐Lavalle LAB. (2019) An optimized isolation protocol yields high‐quality RNA from cassava tissues (Manihot esculenta Crantz). FEBS Open Bio. 9: 814-825.
  • Kaneko-Suzuki M, Ishikawa R, Terakawa C, Kojima C, Fujiwara M, Ohki I, Tsuji H, Shimamoto K, Taoka K. (2018) TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol. 59: 458-468.
  • Purwestri YA, Susanto FA, Tsuji H. (2017) Hd3a florigen recruits different proteins to reveal its function in plant growth and development. Plant Engineering 49-67.
  • Tsuji H. (2017) Molecular function of florigen. Breed. Sci. 67: 327-332.
  • Saihara N, Tsuji H. (2017) Imaging florigen distribution in vivo. Plant Morphol. 29: 27-31.
  • Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z, Terada R, Sakamoto T, Kurata T, Shimamoto K. (2015) FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc. Natl. Acad. Sci. USA. 112: E901-911.
  • Tylewicz, S, Tsuji H, Miskoloczi P, Petterle A, Azeez A, Jonsson K, Shimamoto K, Bhalerao RP. (2015) Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways. Proc. Natl. Acad. Sci. USA. 112: 3140-3145.
  • Tsuji H, Tachibana C, Tamaki S, Taoka K, Kyozuka J, Shimamoto K. (2015) Hd3a promotes lateral branching in rice. Plant J. 82: 256-266.
  • Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, Fujiwara M, Yamaguchi K, Shigenobu S, Higuchi M, Tsuji H, Shimamoto K, Hasebe M, Fukuda H, Sawa S. (2015) Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep. 17: 1236-1236.
  • Fujikawa Y, Nakanishi T, Kawakami H, Yamasaki K, Sato HM, Tsuji H, Matsuoka M, Kato N. (2014) Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format. Rice 7:11.
  • Tsuji H, Nakamura H, Taoka K, Shimamoto K. (2013) Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol. 54: 385-397.
  • Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476: 332-335.
  • Hirano K, Asano K, Tsuji H, Kawamura M, Mori M, Kitano H, Ueguchi-Tanaka M, Matsuoka M. (2010) Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22: 2680-2696.

総説・解説等

  • Tsuji H, Taoka K. (2014) Florigen signaling. The Enzymes 35: 113-144.
  • Tsuji H, Taoka K, Shimamoto K. (2013) Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr. Opin. Plant Biol. 15: 228-235.
  • Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K. (2013) Structure and function of florigen and the receptor complex. Trends Plant Sci. 18: 287-294.
  • Tsuji H, Taoka K, Shimamoto K. (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr. Opin. Plant Biol. 14: 45-52.
  • 辻寛之 (2021) 花成ホルモン・フロリゲンの分子機能. アグリバイオ 5: 457-460.
  • 辻寛之 (2019) 花成ホルモン・フロリゲンが花芽をつくるメカニズム. アグリバイオ 3: 72-74.
  • 辻寛之 (2017) 現代農業に革命の予感!花を咲かせるフロリゲンとは? 化学 72: 41-48.
  • 辻寛之, 田岡健一郎 (2016) フロリゲン受容体の発見とその後. 化学と生物 54: 358-364
  • 辻寛之 (2014)フロリゲン複合体のイメージング. 植物の生長調節 49: 112-121.
  • 辻寛之, 田岡健一郎, 島本 功 (2013)花成ホルモン“フロリゲン”の構造と機能. 領域融合レビュー2: e004.
  • 辻寛之, 田岡健一郎, 島本功 (2012) 花咲かホルモン(フロリゲン). 植調 46: 179-186.
  • 田岡健一郎, 大木出, 辻寛之, 児嶋長次郎, 島本功 (2012) 花成ホルモンフロリゲンとその受容体の構造解析からみえてきたフロリゲン機能の分子基盤. 化学と生物 50: 654-659.
  • 田岡健一郎, 大木出, 辻寛之, 児嶋長次郎, 島本功 (2011) 14-3-3タンパク質はフロリゲンの細胞内受容体としてはたらく. ライフサイエンス新着論文レビュー

著書

  • 辻寛之 (2014)「花芽形成とフロリゲン」高校生物解説書・植物編 (監修 町田泰則・岡田 清孝・山本興太郎) p60-63 講談社.
  • 辻寛之, 島本 功 (2012)「フロリゲンが花を咲かせるメカニズム」農業技術大系 花卉編 32: 2-9. 農文協.

山内 卓樹

原著論文(査読付き)

  • Yamauchi T., Pedersen, O., Nakazono M., Tsutsumi N. (2021) Key root traits of Poaceae respond to gradients in soil water. New Phytologist.229(6). 3133—3140.
  • Arimura S., Ayabe H., Sugaya H., Okuno M., Tamura Y., Tsuruta Y., Watari Y., Yanase, S, Yamauchi T., Itoh T., Toyoda, A., Takanashi H., Tsutsumi N. (2020) Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. The Plant Journal. 104(6). 1459—1471.
  • Yamauchi T., Tanaka A., Tsutsumi N., Inukai Y., Nakazono M. (2020) Distance-to-time conversion by using the Gompertz model reveals the age-dependent aerenchyma formation in rice roots. Plant Physiology.183(4). 1424—1427.
  •  Yamauchi T., Tanaka, A., Tsutsumi N., Inukai Y., Nakazono M. (2020) A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants.9(5). 610.
  • Yamauchi T., Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M. (2019) Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proceedings of the National Academy of Sciences of the USA, 116: 20770−20775.
  • Yamauchi T., Abe F, Tsutsumi N, Nakazono M. (2019) Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science, 10: 259.
  • Inahashi H, Shelly IJ, Yamauchi T., Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. (2018) OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiologia Plantarum, 164: 216−225.
  • Yamauchi T., Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M. (2017) An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. The Plant Cell, 29: 775−790.
  • Yamauchi T., Fukazawa A, Nakazono M. (2017) METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice. Plant Signaling & Behavior, 12: e1388976.
  • Yamauchi T., Tanaka A, Mori H, Takamure I, Kato K, Nakazono M. (2016) Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Plant, Cell & Environment, 39: 2145−2157.
  • Yamauchi T., Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K, Nakazono M. (2015) Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots. Plant Physiology, 169: 180−193.
  • Takahashi H, Yamauchi T., Rajhi I, Nishizawa NK, Nakazono M. (2015) Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Annals of Botany, 115: 879−894.
  • Takano S, Matsuda S, Funabiki A, Furukawa J, Yamauchi T., Tokuji Y, Nakazono M, Shinohara Y, Takamure I, Kato K. (2015) The rice RCN11 gene encodes β1,2-xylosyltransferase and is required for plant responses to abiotic stresses and phytohormones. Plant Science. 236: 75−88.
  • Cartagena JA, Seki M, Tanaka M, Yamauchi T., Sato S, Hirakawa H, Tsuge T. (2015) Gene expression profiles in Jatropha under drought stress and during recovery. Plant Molecular Biology Reporter, 33: 1075−1087.
  • Kulichikhin K, Yamauchi T., Watanabe K, Nakazono M. (2014) Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant, Cell & Environment, 37: 2406−2420.
  • Shiono K, Yamauchi T., Yamazaki S, Mohanty B, Malik AI, Nagamura Y, Nishizawa NK, Tsutsumi N, Colmer TD, Nakazono M. (2014) Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany, 65: 4795−4806.
  • Yamauchi T., Abe F, Kawaguchi K, Oyanagi A, Nakazono M. (2014) Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma. Plant Signaling & Behavior, 9: e28506.
  • Yamauchi T., Johzuka-Hisatomi Y, Terada R, Nakamura I, Iida S. (2014) The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Molecular Biology, 85: 219−232.
  • Hu Z, Yamauchi T., Yang J, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. (2014) Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant and Cell Physiology, 55: 30−41.
  • Yamauchi T., Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. (2014) Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany, 65: 261−273.
  • Abiko T, Obara M, Abe F, Kawaguchi K, Oyanagi A, Yamauchi T., Nakazono M. (2012) Screening of candidate genes associated with constitutive aerenchyma formation in adventitious roots of the teosinte Zea nicaraguensis. Plant Root, 6: 19−27.
  • Rajhi I, Yamauchi T., Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytologist, 190: 351−368.
  • Yamauchi T., Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S. (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. The Plant Journal, 60: 386−396.

総説・解説等

  • Yamauchi T., Nakazono M. (2022) Mechanisms of lysigenous aerenchyma formation under abiotic stress. Trends in Plant Science. 27(1). 13—15.
  • 宮下智貴, 江尻真斗, 島村聡, 山内卓樹, 塩野克宏. (2022) 植物組織の空隙率測定方法―2. アルキメデス法―. 根の研究. 30(2). 41-45.
  • 野村康之, 塩野克宏, 島村聡, 山内卓樹. (2022) 植物組織の空隙率測定方法―3. 切片法―. 根の研究. 30(3). 76-82.
  • 島村聡, 宮下智貴, 江尻真斗, 塩野克宏, 野村康之, 山内卓樹 (2022) 植物組織の空隙率測定方法―4. 各測定方法の特徴と選択―. 根の研究. 30(4). 124-128.
  • Yamauchi T., Noshita K, Tsutsumi N. (2021) Climate-smart crops: key root anatomical traits that confer flooding tolerance. Breeding Science, 71(1). 51—61.
  • 島村聡, 塩野克宏, 山内卓樹. (2021) 植物組織の空隙率測定方法―1.比重瓶法―. 根の研究. 30(1). 8-12.
  • Yamauchi T., Colmer TD, Pedersen O, Nakazono M. (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiology, 176: 1118−1130.
  • 山内卓樹, 星野敦. (2016) 遺伝子のノックアウトとノックダウン. 植物学の百科事典, 日本植物学会編, 丸善出版, 608−609.
  • 山内卓樹, 中園幹生. (2015) イネ科植物の根における過湿環境への形態的な応答・適応機構. 根の研究, 24: 23−35.
  • 山内卓樹, 中園幹生. (2014) イネ科作物の過湿環境への応答を制御する分子機構. 水田転作圃場における湿害対策, 農業および園芸, 養賢堂, 89: 1023−1029.
  • Yamauchi T., Shimamura S, Nakazono M, Mochizuki T. (2013) Aerenchyma formation in crop species: a review. Field Crops Research, 152: 8−16.
  • Nishiuchi S, Yamauchi T., Takahashi H, Kotula L, Nakazono M. (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice, 5: 2.
  • 山内卓樹, 西内俊策, 中園幹生. (2012) 植物の通気組織形成過程におけるメタロチオネインの組織特異的な発現制御. 生化学, 84: 857−862.
  • Yamauchi T., Rajhi I, Nakazono M. (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signaling & Behavior, 6: 759−761.
  • 定塚(久富)恵世, 山内卓樹, 飯田滋. (2011) メンデルの法則における不完全優性と植物の遺伝子量効果. 生化学, 83: 638−642.

著書

  • 山内卓樹. (2020) イネが水田で生育するしくみ―根の解剖学的観点から. イネ大事典, 農文協, 上巻, 442−462.
  • 山内卓樹. (2020) イネが水田で生育するしくみ―根の解剖学的観点から. 農業技術大系・作物編(追録41号), 農文協, 1巻, 246: 147-2−147-22.
  • 山内卓樹. (2016) イネの過湿土壌への適応に貢献する根の解剖学的特徴. 最新農業技術 作物, 農文協, 9巻, 225−240.
  • 山内卓樹. (2016) イネの過湿土壌への適応に貢献する根の解剖学的特徴. 農業技術大系・作物編(追録38号), 農文協, 1巻, 147-2−147-17.
  • Yamauchi T., Iida S. (2015) Gene targeting in crop species with effective selection systems. In Advances in New Technology for Targeted Modification of Plant Genomes, Springer, 91−111.
  • Takahashi H, Yamauchi T., Colmer TD, Nakazono M. (2014) Aerenchyma formation in plants. In Low-oxygen stress in plants: Oxygen sensing and adaptive responses to hypoxia, Springer, 247−265.

佐塚 隆志

原著論文(査読付き)

  • Kawaguchi H, Hasunuma T, Ohnishi Y, Sazuka T, Kondo A, Ogino C (2021) Enhanced production of γ-amino acid 3-amino-4-hydroxybenzoic acid by recombinant Corynebacterium glutamicum under oxygen limitation, Microb. Cell Factories, 20: 228.
  • Hashimoto S., Wake T, Nakamura H., Minamiyama M., Araki-Nakamura S., Ohmae-Shinohara K., Koketsu E., Okamura S., Miura K., Kawaguchi H., Kasuga S., Sazuka T. (2021) The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Sci Rep 11, 4532.
  • Kawaguchi H., Sazuka T., Kondo A. (2020) Complete and Draft Genome Sequences of Amino Acid-Producing Corynebacterium glutamicum Strains ATCC 21799 and ATCC 31831 and Their Genomic Islands. Microbiol Resour Announc. 9 (32): e00430-20. Aug 6. doi:10.1128/MRA.00430-20.
  • Fujimoto M, Sazuka T, Oda Y, Kawahigashi H, Wu J, Takanashi H, Ohnishi T, Yoneda JI, Ishimori M, Kajiya-Kanegae H, Hibara KI, Ishizuna F, Ebine K, Ueda T, Tokunaga T, Iwata H, Matsumoto T, Kasuga S, Yonemaru, JI, Tsutsumi N. (2018) Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proc Natl Acad Sci USA. 115: E8783-E8792.
  • Wijaya H, Sasaki K, Kahar P, Yopi Y, Kawaguchi H, Sazuka T, Ogino C, Prasetya B, Kondo A. (2018) Repeated ethanol fermentation from membrane-concentrated sweet sorghum juice using the flocculating yeast Saccharomyces cerevisiae F118 strain. Bioresour Technol. 265: 542-547.
  • Teramura H, Sasaki K, Oshima T, Kawaguchi H, Ogino C, Sazuka T, Kondo A. (2018) Effective usage of sorghum bagasse: optimization of organosolv pretreatment using 25% v/v 1-butanol and subsequent nanofiltration membrane separation. Bioresour Technol. 252: 157-164.
  • Teramura H, Sasaki K, Kawaguchi H, Matsuda F, Kikuchi J, Shirai T, Sazuka T, Yamasaki M, Takumi S, Ogino C, Kondo A. (2017) Differences in glucose yield of residues from among varieties of rice, wheat, and sorghum after dilute acid pretreatment. Biosci Biotech Biochem. 81: 1650-1656.
  • Kobayashi M, Ohyanagi H, Takanashi H, Asano S, Kudo T, Kajiya-Kanegae H, Nagano AJ, Tainaka H, Tokunaga T, Sazuka T, Iwata H, Tsutsumi N, Yano K. (2017) Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data. DNA Res. 24: 397-405.
  • Sasaki K, Tsuge Y, Kawaguchi H, Yasukawa M, Sasaki D, Sazuka T, Kamio E, Ogino C, Matsuyama H, Kondo A. (2017) Sucrose purification and repeated ethanol production from sugars remaining in sweet sorghum juice subjected to a membrane separation process. App Micbio Biotech. 101: 6007-6014.
  • Hirano K, Masuda R, Takase W, Morinaka Y, Kawamura M, Takeuchi Y, Takagi H, Yaegashi H, Natsume S, Terauchi R, Kotake T, Matsushita Y, Sazuka T. (2017) Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1. Planta. 246: 61-74.
  • Hirano K, Kawamura M, Araki-Nakamura S, Fujimoto H, Ohmae-Shinohara K, Yamaguchi M, Fujii A, Sasaki H, Kasuga S, Sazuka T. (2017) Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci Rep. 7: 126.
  • Yamaguchi M, Fujimoto H, Hirano K, Araki-Nakamura S, Ohmae-Shinohara K, Fujii A, Tsunashima M, Song XJ, Ito Y, Nagae R, Wu J, Mizuno H, Yonemaru J, Matsumoto T, Kitano H, Matsuoka M, Kasuga S, Sazuka T. (2016) Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci Rep. 6: 28366.
  • Teramura H, Sasaki K, Oshima T, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Hirano K, Sazuka T, Kitano H, Kikuchi J, Kondo A. (2016) Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol Biofuels. 9: 27.
  • Tazoe Y, Sazuka T, Yamaguchi M, Saito C, Ikeuchi M, Kanno K, Kojima S, Hirano K, Kitano H, Kasuga S, Endo T, Fukuda H, Makino A. (2016) Growth Properties and Biomass Production in the Hybrid C4 Crop Sorghum bicolor. Plant Cell Physiol. 57: 944-952.
  • Sasaki K, Hara KY, Kawaguchi H, Sazuka T, Ogino C, Kondo A. (2016) Nanofiltration concentration of extracellular glutathione produced by engineered Saccharomyces cerevisiae. J Biosci Bioeng. 121: 96-100.
  • Kawaguchi H, Sasaki K, Uematsu K, Tsuge Y, Teramura H, Okai N, Nakamura-Tsuruta S, Katsuyama Y, Sugai Y, Ohnishi Y, Hirano K, Sazuka T, Ogino C, Kondo A. (2015) 3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum. Bioresour Technol. 198: 410-417.
  • Sasaki K, Tsuge Y, Sasaki D, Kawaguchi H, Sazuka T, Ogino C, Kondo A. (2015) Repeated ethanol production from sweet sorghum juice concentrated by membrane separation. Bioresour Technol. 186: 351-355.
  • Kawaguchi H, Teramura H, Uematsu K, Hara KY, Hasunuma T, Hirano K, Sazuka T, Kitano H, Tsuge Y, Kahar P, Niimi-Nakamura S, Oinuma K, Takaya N, Kasuga S, Ogino C, Kondo A. (2015) Phenyllactic acid production by simultaneous saccharification and fermentation of pretreated sorghum bagasse. Bioresour Technol. 182: 169-178.
  • Sasaki K, Tsuge Y, Sasaki D, Teramura H, Wakai S, Kawaguchi H, Sazuka T, Ogino C, Kondo A. (2014) Increased ethanol production from sweet sorghum juice concentrated by a membrane separation process. Bioresour Technol. 169: 821-825.
  • Ordonio RL, Ito Y, Hatakeyama A, Ohmae-Shinohara K, Kasuga S, Tokunaga T, Mizuno H, Kitano H, Matsuoka M, Sazuka T. (2014) Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Sci Rep. 4: 5287.
  • Ueoka-Nakanishi H, Sazuka T, Nakanishi Y, Maeshima M, Mori H, Hisabori T. (2013) Thioredoxin h regulates calcium dependent protein kinases in plasma membranes. FEBS J. 280: 3220-3231.
  • Yamamoto Y, Inukai Y, Kitano H, Sazuka T, Matsuoka M. (2010) Characterization and mapping of the CROWN ROOTLESS2 gene, CRL2, in rice. Rice Gen Newslet. 25: 25-26.
  • Imamura K, Nagato Y, Matsuoka M, Kitano H, Sazuka T. (2010) Mapping and characterization of the rice gene, CLUB-SHAPED EMBRYO3, CLE3. Rice Gen Newslet. 25: 27-29.
  • Sazuka T. Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M. (2009) A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant J. 60: 227-241.
  • Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M. (2009) A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant J. 60: 227-241.

総説・解説等

  • Ordonio RL, Ito, Y. Morinaka Y. Sazuka T, Matsuoka M. (2016) Molecular breeding of Sorghum bicolor: A Novel Energy Crop. Int Rev Cell Mol Biol. 321: 221-257. Elsevier. (review)

著書

  • 佐塚隆志 (2019) 作物育種で持続可能社会を創り出す. 農業および園芸、養賢堂、95、pp14-18.
  • Saito C, Kobae Y, Sazuka T. (2014) Chloroplast and mitochondria in Sorghum bundle sheath cells. Atlas of Plant Cell Structure. (Noguchi, T, Kawano, S, Tsukaya H. Matsunaga S. Sakai A. Karahara I. Hayashi Y. eds.) p. 64-65. Springer.
  • 佐塚隆志、岩田洋佳 (2014) ゲノムから育種へ: ソルガムのゲノム育種の挑戦. 日本エネルギー学会誌. 93: 429-435.
  • 佐塚隆志 (2014) 高バイオマス性と高糖性を併せ持つバイオリファイナリー用ソルガムの育種開発. バイオインダストリー. 31: 37-44. シーエムシー出版.
  • 佐塚隆志 他 (2009) 植物ゲノム科学事典(駒嶺穆、斉藤和季、田畑哲之、藤村達人、町田泰則、三位正洋編). 朝倉書店.(項目執筆)

岡田 聡史

原著論文(査読付き)

  • Toda Y., Okura F., Ito J., Okada S., Kinoshita T., Tsuji H., Saisho D. (2020) Training instance segmentation neural network with synthetic datasets for crop seed phenotyping. Commun Biol. 3: 173.
  • Hirayama T., Saisho D., Matsuura T., Okada S., Takahagi K., Kanatani A., Ito J., Tsuji H., Ikeda Y., Mochida K. (2020) Life-course monitoring of endogenous phytohormone levels under field conditions reveals diversity of physiological states among barley accessions. Plant Cell Physiol. 61: 1438-1448.
  • Okada S., Iijima K., Hori K., Yamasaki M. (2020) Genetic and epistatic effects for grain quality and yield of three grain-size QTLs identified in brewing rice (Oryza sativa L.). Mol Breed. 40: 88.
  • Okada S., Yamasaki M. (2019) Validation of a quantitative trait locus for the white-core expression rate of grain on chromosome 6 in a brewing rice cultivar and development of DNA markers for marker-assisted selection. Breed Sci. 69: 401-409.
  • Okada S., Sasaki M., Yamasaki M. (2018) A novel rice QTL qOPW11 associated with panicle weight affects panicle and plant architecture. Rice. 11: 53.
  • Okada S., Onogi A., Iijima K., Hori K., Iwata H., Yokoyama W., Suehiro M., Yamasaki M. (2018) Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki against a Koshihikari genetic background. Breed Sci. 68: 210-218.
  • Okada S., Suehiro M., Ebana K., Hori K., Onogi A., Iwata H., Yamasaki M. (2017) Genetic dissection of grain traits in Yamadanishiki, an excellent sake-brewing rice cultivar. Theor Appl Genet. 130: 2567-2585.
  • 岡田聡史、Arturo Garcia、合田喬、前田道弘、片岡知守、末廣美紀、山崎将紀 (2014) 表現形質評価管理システム「FieldBook」によるイネ出穂期計測の効率化.育種学研究16: 32-36.

芦苅 基行

原著論文(査読付き)

  • Yin Y.G., Mori Y., Suzui N., Kurita K., Yamaguchi M., Miyoshi Y., Nagao Y., Ashikari M., Nagai K., Kawachi N. (2021) Noninvasive imaging of hollow structures and gas movement revealed the gas partial-pressure-gradient-driven long-distance gas movement in the aerenchyma along the leaf blade to submerged organs in rice. New Phytologist, 232(5): 1974.
  • Nagai K., Kurokawa Y., Mori Y., Minami A., Reuscher S, Wu J., Matsumoto T., Ashikari M. (2022) SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice. Plants, 11(3): 376.
  • Bessho-Uehara K., Yamagata Y., Takashi T., Makino T., Yasui H., Yoshimura A., Ashikari M. (2021) Exploring the Loci Responsible for Awn Development in Rice through Comparative Analysis of All AA Genome Species. Plants, 10(4): 725
  • Cheng P., Cao L. J., Bai C., Ashikari M., Song X. J. (2021) Fine mapping and characterization of two novel quantitative trait loci for early seedling growth in rice. Planta volume 253, Article number: 56.
  • Nagai K., Mori Y., Ishikawa S., Furuta T., Gamuyao R., Niimi Y., Hobo T., Fukuda M., Kojima M., Takebayashi Y., Fukushima A., Himuro Y., Kobayashi M., Ackley W., Hisano H., Sato K., Yoshida A., Wu J., Sakakibara H., Sato Y., Tsuji H., Akagi T. and Ashikari M. (2020) Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 584: 109–114.
  • Agata A., Ando K., Ota S., Kojima M., Takebayashi Y., Takehara S., Doi K., Ueguchi-Tanaka M., Suzuki T., Sakakibara H., Matsuoka M., Ashikari M., Inukai Y., Kitano H., Hobo T. (2020) Diverse panicle architecture results from various combinations ofPrl5/GA20ox4 and Pbl6/APO1alleles. COMMUNICATIONS BIOLOGY.
  • Fukushima A., Kuroha T., Nagai K., Hattori Y., Kobayashi M., Nishizawa T., Kojima M., Utsumi Y., Oikawa A., Seki M., Sakakibara H., Saito K., Ashikari M. and Kusano M. (2020) Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites, 10(2): 68.
  • Yamada S., Kurokawa Y., Nagai K., Shim R., Yasui H., Furuya N., Yoshimura A., Doi K., Ashikari M., Sunohara H. (2020) Evaluation of Backcrossed Pyramiding Lines of the Yield-related Gene and the Bacterial Leaf Blight Resistant Genes. J Intl Cooper Agric, 18: 18–28.
  • Shim R., Reyes V., Valle M, Lapis R., Shim J., Sunohara H., Jena K. K., Ashikari M., Doi K. (2020) Marker-assisted Introgression of the Quantitative Resistance Gene pi21 Confers Broad Spectrum Resistance of Rice to Blast. Rice Science, 27(2): 113−123.
  • Fukushima, A., Kuroha, T., Nagai, K., Hattori, Y., Kobayashi, M., Nishizawa, T., Kojima, M., Utsumi, Y., Oikawa, A., Seki, M., Sakakibara, H., Saito, K., Ashikari, M., Kusano, M. (2020) Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites, 10(2).
  • Mori Y., Kurokawa Y., Koike M., Malik A.I., Colmer T.D., Ashikari M., Pedersen O., Nagai K. (2019) Diel O2 Dynamics in Partially and Completely Submerged Deepwater Rice: Leaf Gas Films Enhance Internodal O2 Status, Influence Gene Expression and Accelerate Stem Elongation for ‘Snorkelling’ during Submergence. Plant and Cell Physiology, 60:973–985.
  • Reuscher S, Furuta T, Bessho-Uehara K, Cosi M, Jena KK, Toyoda A, Fujiyama A, Kurata N, Ashikari M. (2018) Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species. Nature Communications Biology.
  • Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch SR, Ashikari M. (2018) Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 361: 181-186.
  • Kurokawa Y, Nagai K, Huan PD, Shimazaki K, Qu H, Mori Y, Toda Y, Kuroha T, Hayashi N, Aiga S, Itoh JI, Yoshimura A, Sasaki-Sekimoto Y, Ohta H, Shimojima M, Malik AI, Pedersen O, Colmer TD, Ashikari M. (2018) Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance. New Phytologist, 218: 1558-1569.
  • Minami A, Yano K, Gamuyao R, Nagai K, Kuroha T, Ayano M, Nakamori M, Koike M, Kondo Y, Niimi Y, Kuwata K, Suzuki T, Higashiyama T, Takebayashi Y, Kojima M, Sakakibara H, Toyoda A, Fujiyama A, Kurata N, Ashikari M, Reuscher S. (2018) Time-course transcriptomics analysis reveals key responses of submerged deepwater rice to flooding. Plant Physiology, 176(4): 3081-3102.
  • Kim SR, Ramos JM, Hizon RJM, Ashikari M, Virk PS, Torres EA, Nissila E, Jena KK. (2018) Introgression of a functional epigenetic OsSPL14WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Scientific Reports. 8(1): 3833.
  • Furuta T, Ashikari M, Jena KK, Doi K, Reuscher S. (2017) Adapting Genotyping-by-Sequencing for Rice F2 Populations. G3-GENES GENOMES GENETICS, 7(3): 881-893.
  • Sasidharan R, Bailey-Serres J, Ashikari M, Atwell B. J, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, Holdsworth MJ, Ismail AM, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih M, Sorrell BK, Striker GG, van Dongen JT, Whelan J, Xiao S, Visser EJW, Voesenek LACJ. (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 214(4): 1403-1407.
  • Kuroha T, Nagai K, Kurokawa Y, Nagamura Y, Kusano M, Yasui H, Ashikari M, Fukushima A. (2017) eQTLs Regulating Transcript Variations Associated with Rapid Internode Elongation in Deepwater Rice. Frontiers in Plant Science, 8: 1753.
  • Win KT, Yamagata Y, Doi K, Uyama K, Nagai Y, Toda Y, Kani T, Ashikari M, Yasui H, Yoshimura A. (2017) A single base change explains the independent origin of and selection for the nonshattering gene in African rice domestication. New Phytologist, 213(4): 1925-1935.
  • Bessho-Uehara K, Furuta T, Masuda K, Yamada S, Angeles-Shim R, Ashikari M, Takashi T. (2017) Construction of rice chromosome segment substitution lines harboring Oryza barthii genome and evaluation of yield-related traits. Breeding Science, 67, (4): 408-415.
  • Gamuyao R, Nagai K, Ayano M, Mori Y, Minami A, Kojima M, Suzuki T, Sakakibara H, Higashiyama T, Ashikari M, Reuscher S. (2017) Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth. Plant and Cell Physiology, 58 (4): 702-716.
  • Furuta T, Uehara K, Shim R, Shim J, Nagai K, Ashikari M, Takashi T. (2016) Development of chromosome segment substitution lines harboring Oryza nivara genomic segments in Koshihikari and evaluation of yield-related traits. Breeding Science, 66: 845-850.
  • Bessho- Uehara K, Wang D. R, Furuta T, Minami A, Nagai K, Gamuyao R, Asano K, Shim R, Shimizu Y, Ayano M, Komeda N, Doi K, Miura K, Toda Y, Kinoshita T, Okuda S, Higashiyama T, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y, Greenberg A, Wu J, Yasui H, Yoshimura A, Mori H, McCouch SR, Ashikari M. (2016) Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. PNAS, 113, (32) 8969–8974.
  • Toda Y, Wang Y, Takahashi A, Kawai Y, Tada Y, Yamaji N, Feng Ma J, Ashikari M, Kinoshita T. (2016) Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice. Plant and Cell Physiology, Jun 57, (6) 1220-1230.
  • Segami S, Yamamoto K, Oki K, Noda T, Kanamori H, Sasaki H, Mori S, Ashikari M, Kitano H, Katayose Y, Iwasaki Y, Miura K. (2016) Detection of novel QTLs regulating grain size in extra-large grain rice (Oryza sativa L.) lines. Rice.
  • Ramos J, Furuta T, Uehara K, Chihiro N, Shim R. A, Shim J, Brar D, Ashikari M. and Jena K. (2016) Development of chromosome segment substitution lines (CSSLs) of Oryza longistaminata A. Chev. & Röhr in the background of the elite japonica rice cultivar, Taichung 65 and their evaluation for yield traits. Euphytica, 200, 151-163.
  • Kubo T, Takashi T, Ashikari M, Yoshimura A, Kurata N. (2016) Two tightly linked genes at the hsa1 locus cause both F1 and F2 hybrid sterility in rice. Molecular Plant, Feb 1, 9(2) 221-32.
  • Kurokawa Y, Noda T, Yamagata Y, Shim R. A, Sunohara H, Uehara K, Furuta T, Nagai K, Jena KK, Yasui H, Yoshimura A, Ashikari M, Doi K. (2016) Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Science, 242, 131-9.
  • Furuta T, Komeda N, Asano K, Uehara K, Gamuyao R, Shim RA, Nagai K, Doi K, Wang DR, Yasui H, Yoshimura A, Wu J, McCouch SR, Ashikari M. (2015) Convergent loss of awn in two cultivated rice species Oryza sativa and Oryza glaberrima is caused by mutations in different Loci. Genes Genomes Genetics Sep 2, 5(11) 2267-74.
  • Song X-J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M. (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. PNAS, 112, (1) 76-81.
  • Nagai K, Kondo Y, Kitaoka T, Noda T, Kuroha T, Shim R. A, Yasui H, Yoshimura A, Ashikari M. (2014) QTL analysis of internode elongation in response to gibberellin in deepwater rice. AoB PLANT, 6, 1-12.
  • Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, Shim RA, Kitano H, Nagai K, Ashikari M. (2014) Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell and Environment, 37, 10 2313-2324.
  • Furuta T, Uehara K R Shim RA, Shim JH, Ashikari M, Takashi T. (2014) Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breeding Science, 63, (5) 468-475.
  • Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari, M. (2013) OsLG1 regulates a closed panicle trait in domesticated rice. Nature Genetics, 45, (4) 462-465.
  • Sato-Izawa K, Nakaba S, Tamura K, Yamagishi Y, Nakano Y, Nishikubo N, Kawai S, Kajita S, Ashikari M, Funada R, Katayama Y. and Kitano H. (2012) DWARF50 (D50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5-phosphatase, is required for proper development of intercalary meristem. Plant Cell Environ, 35, (11) 2031-2044.
  • Shim, RA, Asano K, Takashi T, Shim JH, Kuroha T, Ayano M, Ashikari M. (2012) A WUSCHEL-related homeobox 3B gene, depilous (dep), confers glabrousness of rice leaves and glumes. Rice.
  • Luo L, Li W, Miura K, Ashikari M, Kyozuka J. (2012) Control of Tiller Growth of Rice by OsSPL14 and Strigolactones, Which Work in Two Independent Pathways. Plant and Cell Physiology, 53, (10) 1793-1801.
  • Nagai K, Kuroha T, Ayano M, Kurokawa Y, Shim RA, Shim JH, Yasui H, Yoshimura A, Ashikari M. (2012) Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage. Breeding Science, 62, 178–185.
  • Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. (2011) Artificial selection for a green revolution gene during japonica rice domestication. PNAS, 108, (27) 11034-11039.
  • Muto Y, Segami S, Hayashi H, Sakurai J, Murai-Hatano M, Hattori Y, Ashikari M, Maeshima M. (2011) Vacuolar Proton Pumps and Aquaporins Involved in Rapid Internode Elongation of Deepwater Rice. Biosc Biotechnol Biochem, 75, (1) 114-122.
  • Miura K, Ikeda M, Matsubara A, Song X. J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 42, (6) 545-549.
  • Yamagata Y, Yamamoto E, Aya K, Win KT, Doi K, Sobrizal S, Ito M, Kanamori H, Wu J, Matsumoto T, Matsuoka M, Ashikari M, Yoshimura A. (2010) Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. PNAS, 107, (4) 1494-1499.
  • Asano K, Miyao A, Hirochika H, Kitano H, Matsuoka M, Ashikari M. (2010) SSD1, which encodes a plant-specific novel protein, controls plant elongation by regulating cell division in rice. Proc Jpn Acad Ser B Phys Biol Sci, 86, (3) 265-73.
  • Shim RA, Angeles ER, Ashikari M, Takashi T. (2010) Development and evaluation of Oryza glaberrima Steud. chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv. Koshihikari. Breeding Science, 60, (5) 613-619.
  • Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J, Matsumoto T, Kitano H, Matsuoka M, Ashikari M. (2010) Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice. Molecular Genetics and Genomics, 283, (4) 305-15.
  • Hattori Y, Nagai K, Furukawa S, Song X, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460, 1026-1030.
  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H. (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiology, 50, (7) 1201-1214.
  • Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y,Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M. (2009) A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. The Plant Journal, 60, (2) 227-241.
  • Miura K, Agetsuma M, Kitano H, Yoshimura A, Matsuoka M, Jacobsen SE, Ashikari M. (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. PNAS, 106, (27) 11218-11223.
  • Miura K, Wu J, Sunohara H, Wu X, Matsumoto T, Matsuoka M, Ashikari M, Kitano H. (2009) High-resolution mapping revealed a 1.3-Mbp genomic inversion in Ssi1, a dominant semidwarf gene in rice (Oryza sativa L.) Plant Breeding, 128, (1) 63-69.
  • Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M. (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Molecular Genetics and Genomics, 281, (2) 223-231.

総説・解説等

  • 芦苅基行、永井啓祐 (2021) イネの茎伸長による洪水耐性機構の分子メカニズム、化学と生物 Vol.59, No.12, Page.586-597.
  • 土井一行、芦苅基行、菊田真由実、槇原大悟 (2020) イネ収量関連遺伝子の同定と利用 -ケニアでの試み-、アグリバイオ 2020年7月号.
  • Kuroha T., Ashikari M. (2020) Molecular mechanisms and future improvement of submergence tolerance in rice. MOLECULAR BREEDING.
  • 黒羽剛、芦苅基行 (2020) 洪水に適応する浮イネの急速な節間伸長機構、植物の生長調節 Vol. 55, No. 1.
  • 永井啓祐、芦苅基行 (2020) イネの茎伸長を制御するアクセル因子とブレーキ因子の発見、バイオサイエンスとインダストリー Vol. 79, No. 1.
  • 別所-上原奏子、古田智敬、芦苅基行 (2016)「ホルモンと作物-イネの芒はどうして喪失したか?~植物ホルモンの関係~」生物の化学 遺伝、Vol.70, No.5, 58-62.
  • 永井啓祐、黒羽剛、芦苅基行 (2016)「浮きイネ生存戦略におけるジベレリン応答性因子の検索」科学と生物、Vol.54, No.3, 198-204.
  • 永井啓祐、黒川裕介、土井一行、芦苅基行 (2015)「ゲノム情報を利用したイネの育種」国際農林業協力、Vol.38, No.3, 2-11.
  • 上原奏子、芦苅基行 (2013)「ストリゴラクトン様化合物カロラクトンの新たな生合成経路」化学と生物、Vol.51, No.5, pp277-279.
  • 黒川裕介、上原奏子、芦苅基行 (2013)「植物科学の研究成果を利用するイネ育種プロジェクト」植物の成長調節、Vol.48, No.2, 169-171.
  • 芦苅基行 (2013)「植物ゲノム研究で世界の食糧危機を救う」宙舞(自動車技術会中部支部報)、No.72.
  • 三浦孝太郎、北野英己芦苅基行 (2011)「穂を大きくする遺伝子の発見とその応用」月刊食料と安全、第9巻.
  • 永井啓祐、服部洋子、芦苅基行 (2011)「イネの洪水における異なる2つの生存戦略」化学と生物、Vol.49(4): 222-224.
  • 三浦孝太郎、北野英己芦苅基行 (2011)「イネ収量増加遺伝子の発見-穀物増産を通した食糧危機回避へチャレンジ-」農林水産技術研究ジャーナル、Vol.34 No.4: 23-26.
  • Hattori Y, Nagai K, Ashikari M. (2011) Rice growth adapting to deepwater. Current Opinion in Plant Biology, 14: 100-105.
  • Nagai K, Hattori Y, Ashikari M. (2010) Stunt or elongate? Two opposite strategies by which rice adapts to floods. Journal of Plant Research, 123(3): 303-9.
  • 服部洋子、芦苅基行 (2010) 「東南アジアなどで栽培される浮イネの洪水回避機構の解明」BRAINテクノニュース、生研センター 137:17-22.
  • 服部洋子、永井啓祐、芦苅基行 (2010)「エチレン応答における遺伝子発現制御」、植物のシグナル伝達-分子と応答-、126-132.

著書

  • Nagai K, Hirano K, Angeles-Shim R.B, Ashikari M. (2018) Breeding Applications and Molecular Basis of Semi-dwarfism in Rice. Rice Genomics, Genetics and Breeding Chapter 9, 155-176.
  • Angeles-Shim RB, Ashikari M. (2017) Advances in molecular breeding techniques for rice. Achieving sustainable cultivation of rice, Volume 1 P.27-49.

永井 啓祐

原著論文(査読付き)

  • Yin Y.G., Mori Y., Suzui N., Kurita K., Yamaguchi M., Miyoshi Y., Nagao Y., Ashikari M., Nagai K., Kawachi N. (2021) Noninvasive imaging of hollow structures and gas movement revealed the gas partial-pressure-gradient-driven long-distance gas movement in the aerenchyma along the leaf blade to submerged organs in rice. New Phytologist, 232(5): 1974.
  • Nagai K., Kurokawa Y., Mori Y., Minami A., Reuscher S, Wu J., Matsumoto T., Ashikari M. (2022) SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice. Plants, 11(3): 376.
  • Nagai K., Mori Y., Ishikawa S., Furuta T., Gamuyao R., Niimi Y., Hobo T., Fukuda M., Kojima M., Takebayashi Y., Fukushima A., Himuro Y., Kobayashi M., Ackley W., Hisano H., Sato K., Yoshida A., Wu J., Sakakibara H., Sato Y., Tsuji H., Akagi T. and Ashikari M. (2020) Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 584: 109–114.
  • Fukushima A., Kuroha T., Nagai K., Hattori Y., Kobayashi M., Nishizawa T., Kojima M., Utsumi Y., Oikawa A., Seki M., Sakakibara H., Saito K., Ashikari M. and Kusano M. (2020) Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites, 10(2): 68.
  • Yamada S., Kurokawa Y., Nagai K., Shim R., Yasui H., Furuya N., Yoshimura A., Doi K., Ashikari M., Sunohara H. (2020) Evaluation of Backcrossed Pyramiding Lines of the Yield-related Gene and the Bacterial Leaf Blight Resistant Genes. J Intl Cooper Agric, 18: 18–28.
  • Fukushima, A., Kuroha, T., Nagai, K., Hattori, Y., Kobayashi, M., Nishizawa, T., Kojima, M., Utsumi, Y., Oikawa, A., Seki, M., Sakakibara, H., Saito, K., Ashikari, M., Kusano, M. (2020) Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites, 10(2).
  • Mori Y., Kurokawa Y., Koike M., Malik A.I., Colmer T.D., Ashikari M., Pedersen O., Nagai K. (2019) Diel O2 Dynamics in Partially and Completely Submerged Deepwater Rice: Leaf Gas Films Enhance Internodal O2 Status, Influence Gene Expression and Accelerate Stem Elongation for ‘Snorkelling’ during Submergence. Plant and Cell Physiology, 60:973–985.
  • Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch SR, Ashikari M. (2018) Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 361: 181-186.
  • Kurokawa Y, Nagai K, Huan PD, Shimazaki K, Qu H, Mori Y, Toda Y, Kuroha T, Hayashi N, Aiga S, Itoh JI, Yoshimura A, Sasaki-Sekimoto Y, Ohta H, Shimojima M, Malik AI, Pedersen O, Colmer TD, Ashikari M. (2018) Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance. New Phytologist, 218: 1558-1569.
  • Minami A, Yano K, Gamuyao R, Nagai K, Kuroha T, Ayano M, Nakamori M, Koike M, Kondo Y, Niimi Y, Kuwata K, Suzuki T, Higashiyama T, Takebayashi Y, Kojima M, Sakakibara H, Toyoda A, Fujiyama A, Kurata N, Ashikari M, Reuscher S. (2018) Time-course transcriptomics analysis reveals key responses of submerged deepwater rice to flooding. Plant Physiology, 176(4): 3081-3102.
  • Kuroha T, Nagai K, Kurokawa Y, Nagamura Y, Kusano M, Yasui H, Ashikari M, Fukushima A. (2017) eQTLs Regulating Transcript Variations Associated with Rapid Internode Elongation in Deepwater Rice. Frontiers in Plant Science, 8: 1753.
  • Furuta T, Uehara K, Shim R, Shim J, Nagai K, Ashikari M, Takashi T. (2016) Development of chromosome segment substitution lines harboring Oryza nivara genomic segments in Koshihikari and evaluation of yield-related traits. Breeding Science, 66: 845-850.
  • Bessho- Uehara K, Wang D. R, Furuta T, Minami A, Nagai K, Gamuyao R, Asano K, Shim R, Shimizu Y, Ayano M, Komeda N, Doi K, Miura K, Toda Y, Kinoshita T, Okuda S, Higashiyama T, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y, Greenberg A, Wu J, Yasui H, Yoshimura A, Mori H, McCouch SR, Ashikari M. (2016) Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. PNAS, 113, (32) 8969–8974.
  • Kurokawa Y, Noda T, Yamagata Y, Shim R. A, Sunohara H, Uehara K, Furuta T, Nagai K, Jena KK, Yasui H, Yoshimura A, Ashikari M, Doi K. (2016) Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Science, 242, 131-9.
  • Furuta T, Komeda N, Asano K, Uehara K, Gamuyao R, Shim RA, Nagai K, Doi K, Wang DR, Yasui H, Yoshimura A, Wu J, McCouch SR, Ashikari M. (2015) Convergent loss of awn in two cultivated rice species Oryza sativa and Oryza glaberrima is caused by mutations in different Loci. Genes Genomes Genetics Sep 2, 5(11) 2267-74.
  • Song X-J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M. (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. PNAS, 112, (1) 76-81.
  • Nagai K, Kondo Y, Kitaoka T, Noda T, Kuroha T, Shim R. A, Yasui H, Yoshimura A, Ashikari M. (2014) QTL analysis of internode elongation in response to gibberellin in deepwater rice. AoB PLANT, 6, 1-12.
  • Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, Shim RA, Kitano H, Nagai K, Ashikari M. (2014) Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell and Environment, 37, 10 2313-2324.
  • Nagai K, Kuroha T, Ayano M, Kurokawa Y, Shim RA, Shim JH, Yasui H, Yoshimura A, Ashikari M. (2012) Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage. Breeding Science, 62, 178–185.
  • Hattori Y, Nagai K, Furukawa S, Song X, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460, 1026-1030.

総説・解説等

  • 芦苅基行永井啓祐 (2021) イネの茎伸長による洪水耐性機構の分子メカニズム、化学と生物 Vol.59, No.12, Page.586-597.
  • 永井啓祐 (2021) イネの茎伸長の開始を制御する2つのスイッチ因子の発見と農業的応用、JATAFFジャーナル Vol.9, No.10.
  • 永井啓祐、芦苅基行 (2020) イネの茎伸長を制御するアクセル因子とブレーキ因子の発見、バイオサイエンスとインダストリー Vol. 79, No. 1.
  • 永井啓祐、服部洋子、芦苅基行 (2011)「イネの洪水における異なる2つの生存戦略」化学と生物、Vol.49(4): 222-224.
  • Hattori Y, Nagai K, Ashikari M. (2011) Rice growth adapting to deepwater. Current Opinion in Plant Biology, 14: 100-105.
  • Nagai K, Hattori Y, Ashikari M. (2010) Stunt or elongate? Two opposite strategies by which rice adapts to floods. Journal of Plant Research, 123(3): 303-9.
  • 服部洋子、永井啓祐芦苅基行 (2010)「エチレン応答における遺伝子発現制御」、植物のシグナル伝達-分子と応答-、126-132.

著書

  • Nagai K, Hirano K, Angeles-Shim R.B, Ashikari M. (2018) Breeding Applications and Molecular Basis of Semi-dwarfism in Rice. Rice Genomics, Genetics and Breeding Chapter 9, 155-176.

上口(田中)美弥子

原著論文(査読付き)

  • Kawai K., Takehara S., Kashio T., Morii M., Sugihara A., Yoshimura H., Ito A., Hattori M., Toda Y., Kojima M., Takebayashi Y., Furuumi H., Nonomura K., Mikami B., Akagi T., Sakakibara H., Kitano H., Matsuoka M., Ueguchi-Tanaka M. (2022) Evolutionary alterations in gene expression and enzymatic activities of gibberellin 3-oxidase 1 in Oryza. Commun Biol. 5, 67. doi: 10.1038/s42003-022-03008-5.
  • Morii M., Sugihara A., Takehara S., Kanno Y., Kawai K., Hobo T., Hattori M., Yoshimura H., Seo M., Ueguchi-Tanaka M. (2020) The Dual Function of OsSWEET3a as a Gibberellin and Glucose Transporter Is Important for Young Shoot Development in Rice. Plant Cell Physiol. 61, 1935-1945. doi: 10.1093/pcp/pcaa130.
  • Agata A., Ando K., Ota S., Kojima M., Takebayashi Y., Takehara S., Doi K., Ueguchi-Tanaka M., Suzuki T., Sakakibara H., Matsuoka M., Ashikari M., Inukai Y., Kitano H., Hobo T. (2020) Diverse panicle architecture results from various combinations of Prl5/GA20ox4 and Pbl6/APO1 alleles. Commun Biol. 3, 302. doi: 10.1038/s42003-020-1036-8.
  • Takehara S., Sakuraba S., Mikami B., Yoshida H., Yoshimura H., Itoh A., Endo M., Watanabe N., Nagae T., Matsuoka M., Ueguchi-Tanaka M. (2020) A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin. Nat Commun. doi: 10.1038/s41467-020-16068-0.
  • Yano K., Morinaka Y., Wang F., Huang P., Takehara S., Hirai T., Ito A., Koketsu E., Kawamura M., Kotake K., Yoshida S., Endo M., Tamiya G., Kitano H., Ueguchi-Tanaka M., Hirano K., Matsuoka M. (2019) GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc Natl Acad Sci U S A. 116 (42): 21262-21267.
  • Yoshida H, Tanimoto E, Hirai T, Miyanoiri Y, Mitani R, Kawamura M, Takeda M, Takehara S, Hirano K, Kainosho M, Akagi T, Matsuoka M, Ueguchi-Tanaka M. (2018) Evolution and diversification of the plant gibberellin receptor GID1. Proc. Natl. Acad. Sci. USA 115: E7844-E7853.
  • Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Satoh-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M. (2017) Small organ size 1 and small organ size 2/dwarf and low tillering form a complex to integrate auxin and brassinosteroid signaling in rice. Molecular Plant, 3: 590-604.
  • Ito S, Yamagami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, Yajima S, Kyozuka J, Ueguchi-Tanaka M, Matsuoka M, Shirasu K, Yamaguchi S, Asami T. (2017) Regulation of Strigolactone Biosynthesis by Gibberellin Signaling. Plant Physiol. 174: 1250-1259.
  • Huang P, Yoshida H, Yano K, Kinoshita S, Kawai K, Koketsu E, Hattori M, Takehara S, Huang J, Hirano K, Ordonio RL, Matsuoka M, Ueguchi-Tanaka M. (2017) OsIDD2, a zinc finger and INDETERMINATE DOMAIN protein, regulates secondary cell wall formation. J. Integr. Plant Biol. doi: 10.1111/jipb.12557.
  • Yano K, Aya K, Hirano K, Ordonio RL, Ueguchi-Tanaka M, Matsuoka M. (2015) Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor(s). Plant Physiol. 167: 531-544.
  • Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y, Ueguchi-Tanaka M, Kitano H, Matsuoka M. (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 9, doi: 10.1371.
  • Tanaka J, Yano K, Aya K, Hirano K, Takehara S, Kouketsu E, Ordonio RL, Park S-H, Nakajima M, Ueguchi-Tanaka M, Matsuoka, M. (2014) Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science 346: 469-473.
  • Yoshida H, Ueguchi-Tanaka M. (2014) DELLA and SCL3 balance gibberellin feedback regulation by utilizing INDERMINATE DOMAIN proteins as transcriptional scaffolds. Plant Signal Behav. pii: e29726.
  • Yoshida H, Hirano K, Sato T, Mitsuda N, Nomoto M, Maeo K, Koketsu E, Mitani R, Kawamura M, Ishiguro S, Tada Y, Ohme-Takagi M, Matsuoka M, Ueguchi-Tanaka M. (2014) DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins. Proc. Natl. Acad. Sci. USA 111: 7861-7866.
  • Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M. (2014) A Novel AP2-Type Transcription Factor, SMALL ORGAN SIZE1, Controls Organ Size Downstream of an Auxin Signaling Pathway. Plant Cell Physiol. 55: 897-912.
  • Sato T, Miyanoiri Y, Takeda M, Naoe Y, Mitani R, Hirano K, Takehara S, Kainosho M, Matsuoka M, Ueguchi-Tanaka M, Kato H. (2014) Expression and purification of a GRAS domain of SLR1, the rice DELLA protein. Protein Expr. Purif. 95: 248-258.
  • Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M. (2012) The Suppressive Function of the Rice DELLA Protein SLR1 is Dependent on its Transcriptional Activation Activity. Plant J. 71: 443-453.
  • Aya K, Hiwatashi Y, Kojima M, Sakakibara H, Ueguchi-Tanaka M, Hasebe M, Matsuoka, M. (2011) The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nat. Commun. 544: doi: 10.1038.
  • Xiang H, Takeuchi H, Tsunoda Y, Nakajima M, Murata K, Ueguchi-Tanaka M, Kidokoro S, Kezuka Y, Nonaka T, Matsuoka M, Katoh E. (2011) Thermodynamic characterization of OsGID1-gibberellin binding using calorimetry and docking simulations. J. Mol. Recognit. 24: 275-282.
  • Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, Kitano H, Matsuoka M, Ueguchi-Tanaka M. (2010) A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. Plant Cell 22: 3589-3602.
  • Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. (2010) Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22: 2680-2696.
  • Asano K, Hirano K, Ueguchi-Tanaka M, Angels-Shim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M. (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol. Genet. Genomics, 281: 223-231.
  • Suzuki H, Park SH, Okubo K, Kitamura J, Ueguchi-Tanaka M, Iuchi S, Katoh E, Kobayashi , Yamaguchi I, Matsuoka M, Asami T, Nakajima M. (2009) Differential expression and affinities of Arabidopsis gibberellin receptors can explain variation in phenotypes of multiple knock-out mutants. Plant J. 60: 48-55.
  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21: 1453-1472.
  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H. (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 50: 1201-1214.
  • Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M. (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol. Genet. Genomics. 281: 223-231.

総説・解説等

  • 上口(田中)美弥子 (2021) 「ジベレリンの進化」 植物の生長調節、 56 71-76. doi: https://doi.org/10.18978/jscrp.56.2_71.
  • 上口(田中)美弥子、竹原清日 (2021) 「ジベレリンの輸送および代謝の分子メカニズム」 バイオサイエンスとインダストリー(B&I)、79 456-461. 
  • 上口(田中)美弥子、竹原清日 (2021)植物ホルモン代謝酵素の活性調節機構~モノーが提唱したアロステリック制御メカニズムの一端を解明~」 生化学、93 404-408.  doi:10.14952/SEIKAGAKU.2021.930404.
  • Kawai K., Ueguchi-Tanaka M., Matsuoka M. Future Strategy of Breeding: Learn by Two Important Genes of Miracle Rice. Mol Plant. (2020) 13, 823-824. doi: 10.1016/j.molp.2020.05.001
  • 田中純夢、上口(田中)美弥子、ある種のシダにおいてジベレリンは時空間的なコミュニケーションツールとして使われてきた (2017) 化学と生物 55: 2-4.
  • 吉田英樹、上口(田中)美弥子、(2016) ジベレリンシグナル伝達 ─ 受容体GID1と抑制因子DELLAの働き 生物の科学 遺伝 361-365.
  • 吉田英樹、上口(田中)美弥子 (2016) ジベレリンシグナル伝達の鍵因子DELLAタンパク質の転写活性化機構. 化学と生物 54: 176-180.
  • 田中純夢、上口(田中)美弥子 (2014) 「アンセリジオーゲンはジベレリンの生合成経路を時間的および空間的に分けることによりシダの性を決定する」ライフサイエンス新着論文レビュー.
  • Hirano K, Aya K, Matsuoka M, Ueguchi-Tanaka M. (2012) Molecular determinants that convert hormone sensitive lipase into gibberellin receptor. Protein Pept Lett. 19: 180-185.
  • Ueguchi-Tanaka M, Matsuoka M. (2010) The perception of gibberellins: clues from receptor structure. Curr. Opin. Plant Biol. 13: 503-508.
  • 加藤博章、佐藤友美、上口(田中)美弥子 (2010) 「ジベレリン受容体GID1によるジベレリン認識とその分子進化」日本結晶学会誌 52: 31-36.

著書

  • Takehara, S, Ueguchi-Tanaka M. (2018) Gibberellin. Plant Structure Biology 83-95.
  • 上口(田中)美弥子、中嶋正敏 (2016) 植物ホルモンの科学第3版 37-52.
  • Yoshida H, Ueguchi-Tanaka M, Matsuoka M. (2014) Regulatory Networks Acted Upon by the GID1–DELLA System After Perceiving Gibberellin. Signaling Pathways in Plants/Elsevier.12-25.
  • 安益公一郎、上口(田中)美弥子松岡信 (2010)「ジベレリン受容体の構造解明ージベレリン受容能の獲得まで」植物のシグナル伝達、共立出版、31-38.

野田口 理孝

原著論文(査読付き)

  • Notaguchi M, Pallas V, Qiu J. and Xutong Wang X. (2022). Editorial: Systemic RNA Signalling in Plants. Front. Plant Sci. 13 Article 878728.
  • Kurotani K, Huang C, Okayasu K, Ichihashi Y, Shirasu K, Suzuki T, Higashiyama T, Niwa M and Notaguchi M. (2022). The capacity of interfamily grafting was found in Petunia, a floriculture species. Horticulture Research. 9: uhab056.
  • Kurotani K and Notaguchi M. (2021). Cell-to-cell connection in plant grafting – molecular insights into symplasmic reconstruction. Plant and Cell Physiology. 62(9):1362-1371.
  • Tsutsui H, Kawakatsu Y and Notaguchi M. (2021). A silicone micrografting chip in Arabidopsis thaliana. Bio-protocol. 11:(12) e4053.
  • Kawakatsu Y, Sakamoto T, Nakayama H, Kaminoyama K, Igarashi K, Yasugi M, Kudoh H, Nagano A J, Yano K, Kubo N, Notaguchi M, and Kimura S. (2021). Combination of genetic analysis and ancient literature survey reveals the divergence of traditional Brassica rapa varieties from Kyoto, Japan. Horticulture Research. 8: 132.
  • Motomura K, Takeuchi H and Notaguchi M, Tsuchi H, Takeda A, Kinoshita T, Higashiyama T, Maruyama D. (2021). Persistent directional growth capability in Arabidopsis thaliana pollen tubes after nuclear elimination from the apex. Nature Communications.12: 2331.
  • Okayasu K., Aoki K., Kurotani K. and Notaguchi M. (2021) Tissue adhesion between distant plant species in parasitism and grafting. Communications Integrative Biology. 14(1): 21-23.
  • Kawakatsu Y., Sawai Y., Kurotani K., Shiratake K. and Notaguchi M. (2020) An in vitro grafting method to quantify mechanical forces of adhering tissues. Plant Biotechnology. 37: 1-8.
  • Muramatsu T., Suehara K., Kameoka T., Notaguchi M. and Hashimoto A. (2020) Development of multiband optical sensing method for phenotyping of tomatoes in cultivation site. Food Research. 4: 132-137
  • Honma Y., Adhikari PB., Kuwata K., Kagenishi T., Yokawa K., Notaguchi M., Kurotani K., Toda E., Bessho-Uehara K., Liu X, Zhu S., Wu X. and Kasahara RD. (2020) High-quality sugar production by osgcs1 rice. Communications Biology. 3: 617
  • Notaguchi M, Kurotani K, Sato Y, Tabata R, Kawakatsu Y, Okayasu K, Sawai Y, Okada R, Asahina M, Ichihashi Y, Shirasu K, Suzuki T, Niwa M and Higashiyama T. (2020) Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science. 369: 698-702.
  • Kurotani K., Wakatake T., Ichihashi Y., Okayasu K., Sawai Y., Ogawa S., Suzuki T., Shirasu K. and Notaguchi M. (2020) Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum. Communications Biology. 3: 407.
  • Tsutsui H., Yanagisawa N., Kawakatsu Y., Ikematsu S., Sawai Y., Tabata R., Arata H., Higashiyama T. and Notaguchi M. (2020)  Micrografting device for testing systemic signaling in Arabidopsis. The Plant Journal. 103: 918-929.
  • Shinozaki D., Notaguchi M. and Yoshimoto K. (2020) Importance of non-systemic leaf autophagy for suppression of zinc starvation induced-chlorosis. Plant Signaling & Behavior. 15: 1746042.
  • Kurotani K, Tabata R, Kawakatsu Y, Sugita R, Okayasu K, Tanoi K, Notaguchi M. (2020) Autophagy is induced during plant grafting for wound healing. bioRxiv2020/2/14. doi.org/10.1101/2020.02.14.949453
  • Huang C, Wang Y, Yang Y, Zhong C, Notaguchi M, Yu W. (2019). A Susceptible Scion Reduces Rootstock Tolerance to Ralstonia solanacearum in Grafted Eggplant. Horticulturae. 5: 78.
  • Shiratake K, Notaguchi M, Makino H, Sawai Y and Boghi L. (2019) Petunia PLEIOTROPIC DRUG RESISTANCE 1 is a Strigolactone Short-distance Transporter with Long-distance Outcomes. Plant Cell Physiology. Volume 60, Issue8,August 2019: 1722–1733.
  • Toju H, Okayasu K, and Notaguchi M. (2019). Leaf-associated microbiomes of grafted tomato plants. Scientific Reports. 9: 1787.
  • Endo M, Yoshida M, Sasaki Y, Negishi K, Horikawa K, Daimon Y, Kurotani K, Notaguchi M, Abe M and Araki T. (2018). Re-Evaluation of Florigen Transport Kinetics with Separation of Functions by Mutations That Uncouple Flowering Initiation and Long-Distance Transport. Plant and Cell Physiology 59: 1621–1629.
  • Muramatsu T, Suehara K, Notaguchi M, Hashimoto A. (2018). Quantitative measurement method of plural chemical elements in fresh leaves using portable x-ray fluorescent spectrometer. AFITA/WCCA2018: 31.
  • Kasahara RD, Notaguchi M and Honma Y. (2017). Discovery of pollen tube-dependent ovule enlargement morphology phenomenon, a new step in plant reproduction. Communicative & Integrative Biology 10: e1338989.
  • Hida H, Ozoe K, Kanno I and Notaguchi M. (2017). Methods for physical characterization of growing plant roots. MicroTAS: 0524.
  • Nishiwaki D, Hida H, Kanno I and Notaguchi M. (2017). On-chip mechanical stress test on plant root growth. MicroTAS: 0225.
  • Kasahara RD†, Notaguchi M†, Nagahara S, Suzuki T, Susaki D, Honma Y, Maruyama D and Higashiyama T. (2016). Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. Science Advances 2: e1600554. †Co-first author
  • Hida H, Nishiwaki D, Notaguchi M and Kanno I. (2016). Analytical methods of root growth behavior using an artificial soil device. MicroTAS 6.03. 0489.
  • Notaguchi M, Higashiyama T and Suzuki T. (2015). Identification of mRNAs That Move over Long Distances Using an RNA-Seq Analysis of Arabidopsis/Nicotiana benthamiana Heterografts. Plant Cell Physiology 56: 311-321.
  • Hida H, Ozoe K, Kanno I, Higashiyama T and Notaguchi M. (2015). Development of on-chip physical characterization method for root growth. Plant Biomechanics 8.
  • Ozoe K, Hida H, Kanno I, Higashiyama T and Notaguchi M. (2015). Early characterization method of plant root adaptability to soil environments. Micro Electro Mechanical Systems 15: 702-705.
  • Ozoe K, Hida H, Kanno I, Higashiyama T and Notaguchi M. (2014) On-chip force measurement system for investigating plant-root growth. Micor-NanoMechatronics and Human Science 14: 91-93.
  • Hida H, Nishiyama H, Sawa S, Notaguchi M, Arata T, Higashiyama T and Kanno I. (2014). MEMS application in agriculture. ICSS 14: 144-145.
  • Notaguchi M, Wolf S and Lucas WJ. (2012). Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. Journal of Integrative Plant Biology 54: 760-772.
  • Notaguchi M, Daimon Y, Abe M and Araki T. (2009). Graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Signaling & Behavior 4: 123-125.
  • Notaguchi M, Daimon Y, Abe M and Araki T. (2009). Adaptation of a seedling micro-grafting technique to the study of long-distance signaling in flowering of Arabidopsis thaliana. Journal of Plant Research 122: 201-214.

総説・解説等

  • 黒谷賢一, 野田口理孝. 糖鎖の加水分解酵素が植物をつなぐ. 2021. Glycoforum. Vol.24 (1), A2.
  • 黒谷賢一, 丹羽優喜, 野田口理孝. 接ぎ木の接着メカニズムの解明. 2021. Science Japan
  • 黒谷賢一, 野田口理孝. 接ぎ木の成立メカニズムの解明と異科接木の農業利用. 2021. バイオサイエンスとインダストリー (B&I). 79(1): 16-19.
  • 野田口理孝. タバコ属植物が遠縁の植物とも接ぎ木可能なことを発見!2021. 化学Vol.76 No.1.
  • 妹尾啓史,増田曜子,伊藤英臣,野田口理孝,田畑亮,岡安浩次,澤井優,鈴木孝征,黒谷賢一,藤雅子,Yuniar Devi Utami,清水幸子,西條雄介,大森良弘,藤原徹,白鳥豊,太田沙由理. 2020. 理想の農業を追求する-サステイナブルで革新的な食糧生産を支える基礎研究と現場技術. 日本土壌肥料学雑誌 第91巻 第2号
  • Tsutsui H and Notaguchi M. (2017). The Use of Grafting to Study Systemic Signaling in Plants. Plant and Cell Physiology 58: 1291-1301.
  • Notaguchi M. (2017). Systemic RNA in plants. Botanical Society of Japan-Review 8: 121–129.
  • Notaguchi M and Okamoto S. (2015). Dynamics of long-distance signaling via plant vascular tissues. Frontiers in Plant Science 6: Article 161.
  • Notaguchi M. (2015). Identification of phloem‑mobile mRNA. Journal of Plant Research 128: 27-35.

著書

  • 東山哲也, 栗原大輔, 野田口理孝, 柳澤直樹. ナノ工学が推進する植物科学. 最先端ナノライフシステム研究_電子版. 10章p194-202. 2022.
  • Okayasu K and Notaguchi M. (2019). Efficient establishment of interfamily heterograft of Nicotiana benthamiana and Arabidopsis thaliana. Phloem: Methods and Protocols. Springer. Chapter 31.
  • Notaguchi M. (2018). Technologies for propagation and production of plants The application of cell culture and grafting. Agricultural Biotechnology. 2:1043–1047.
  • テイツ・ザイガー植物生理学 第4版 一部翻訳. (2016). 第21章 配偶体∙受精∙種子∙果実 p650-651.

北島 健

原著論文(査読付き)

  • Araki E, Hane M, Hatanaka R, Kimura R, Tsuda K, Wu D, Komura N, Ando H, Kitajima K, Sato C. (2022) Analysis of biochemical features of ST8 α‐N‐acetyl‐neuraminide α2,8‐sialyltransferase (St8sia) 5 isoforms. Glycoconjugate Journal. 39:291-302 (doi: 10.1007/s10719-021-10034-8).
  • Hatanaka R, Araki E, Hane M, Wu D, Kitajima K, Sato C. (2022) Abnormal ER localization of St8sia6 is not responsible for the colony formation ability in cancer. Biochem Biophys Res Commun. 608:52-58 (doi: 10.1016/j.bbrc.2022.03.146).
  • Takahashi Y, Abe C, Hane M, Wu D, Kitajima K, Sato C. (2022) Polysialylation in DISC1-mutant mouse. Int J Mol Sci. 23:5207 (doi: 10.3390/ijms23095207).
  • Go S, Sato C, Hane M Go Shinji, Kitajima K. (2022) Implication of N-glycolylneuraminic acid in regulation of cell adhesiveness of C2C12 myoblast cells. Glycoconjugate Journal. in press
  • Wu D, Arakawa H, Fujita A, Hashimoto H, Hibi M, Naruse K, Kamei Y, Sato C, Kitajima K. (2021) A point-mutation in the C-domain of CMP-sialic acid synthetase leads to lethality of medaka due to protein insolubility. Scientific Reports. 11:23211 (doi: 10.1038/s41598-021-01715-3)
  • Yoshimura A, Hatanaka R, Tanaka H, Kitajima K, Sato C. (2021) The conserved arginine residue in all Siglecs is essential for Siglec-7 binding to sialic acid. Biochem Biophys Res Commun. 534:1069-1075 (doi: 10.1016/j.bbrc.2020.10.023).
  • Yoshimura A, Asahina Y, Chang LY, Angata T, Tanaka H, Kitajima K, Sato C. (2021) Identification and functional characterization of a Siglec-7 counter-receptor on K562 cells. J Biol Chem. 296:100477 (doi: 10.1016/j.jbc.2021.100477).
  • Saha S, Coady A, Sasmal A, Kawanishi K, Choudhury B, Yu H, Sorensen RU, Inostroza J, Schoenhofen IC, Chen X, Münster-Kühnel A, Sato C, Kitajima K, Ram S, Nizet V, Varki A. (2021) Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. mBio. 12(1):e03226-20. (doi: 10.1128/mBio.03226-20).
  • Kawanishi K, Saha S, Diaz S, Vaill M, Sasmal A, Siddiqui SS, Choudhury B, Sharma K, Chen X, Schoenhofen IC, Sato C, Kitajima K, Freeze HH, Münster-Kühnel A, Varki A. (2021) Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis. J Clin Invest. 131(5):e137681.  (doi: 10.1172/JCI137681).
  • Hayakawa T, Terahara M, Fujito NT, Matsunaga T, Teshima KM, Hane M, Kitajima K, Sato C, Takahata N, Satta Y. (2021) Lower promoter activity of the ST8SIA2 gene has been favored in evolving human collective brains. PLoS One. 16(12):e0259897. doi: 10.1371/journal.pone.0259897. 
  • Yoshimura A., Hatanaka R., Tanaka H., Kitajima K., Sato C. (2021) The conserved arginine residue in all Siglecs is essential for Siglec-7 binding to sialic acid. Biochem Biophys Res Commun. 534:1069-1075 (doi: 10.1016/j.bbrc.2020.10.023).
  • Yoshimura A., Asahina Y., Chang LY., Angata T., Tanaka H., Kitajima K., Sato C. (2021) Identification and functional characterization of a Siglec-7 counter-receptor on K562 cells. J Biol Chem. 296:100477 (doi: 10.1016/j.jbc.2021.100477).
  • Yang Y., Murai R, Takahashi Y., Mori A., Hane M., Kitajima K., Sato C. (2020) Comparative studies of polysialic acids derived from five different vertebrate brains. International Journal of Molecular Sciences. 21(22): 8593 (doi.org/10.3390/ijms21228593).
  • Yamakawa N., Yasuda Y., Yoshimura A., Goshima A., Crocker PR., Vergoten G., Nishiura Y., Takahashi T., Hanashima S., Matsumoto K., Yamaguchi Y., Tanaka H., Kitajima, K., Sato, C. (2020) Discovery of a new sialic acid binding region that regulates Siglec-7. Scientific Reports. 10(1):8647 (doi: 10.1038/s41598-020-64887-4).
  • Iwaki Y., Matsunaga E., Takegawa K., Sato C., Kitajima K. (2020) Identification and characterization of a novel, versatile sialidase from a Sphingobacterium that can hydrolyze the glycosides of any sialic acid species at neutral pH. Biochem Biophys Res Commun. 523(2), 487-492 (doi: 10.1016/j.bbrc.2019.12.079).
  • Mori A., Yang Y., Takahashi Y., Hane M., Kitajima K., Sato C. (2020) Combinational analyses with multiple methods reveal the existence of several forms of polysialylated neural cell adhesion molecule in mouse developing brains. International Journal of Molecular Sciences. 21(16):E5892 (doi: 10.3390/ijms21165892).
  • Ertunc N., Sato C., Kitajima K. (2020) Sialic acid sulfation is induced by the antibiotic treatment in mammalian cells. Biosci Biotechnol Biochem. 84(11):2311-2318 (doi: 10.1080/09168451.2020.1792763).
  • Timklay W, Magerd S, Sato C, Somrit M, Watthammawut A, Senarai T, Weerachatyanukul W, Kitajima K, Asuvapongpatana S. (2019) N-linked mannose glycoconjugates on shrimp thrombospondin, pmTSP-II, and their involvement in the sperm acrosome reaction. Mol Reprod Dev. 86(4), 440-449 (doi: 10.1002/mrd.23122).
  • Abe C, Yi Y, Hane M, Kitajima K, Sato C. (2019) Acute stress-induced change in polysialic acid levels mediated by sialidase in mouse brain. Sci Rep. 9(1), 9950 (doi: 10.1038/s41598-019-46240-6).
  • Ikegami K, Saigoh K, Fujioka A, Nagano M, Kitajima K, Sato C, Masubuchi S, Kusunoki S, Shigeyoshi Y. (2019) Effect of expression alteration in flanking genes on phenotypes of St8sia2-deficient mice. Sci Rep. 9(1), 13634 (doi: 10.1038/s41598-019-50006-5).
  • Lin CY, Lai HL, Chen HM, Siew JJ, Hsiao CT, Chang HC, Liao KS, Tsai SC, Wu CY, Kitajima K, Sato C, Khoo KH, Chern Y. (2019) Functional roles of ST8SIA3-mediated sialylation of striatal dopamine D2 and adenosine A2Areceptors. Transl Psychiatry. 9(1), 209 (doi: 10.1038/s41398-019-0529-z).
  • Iwaki Y, Matsunaga E, Takegawa K, Sato C, Kitajima K. (2019) Identification and characterization of a novel, versatile sialidase from a Sphingobacterium that can hydrolyze the glycosides of any sialic acid species at neutral pH. Biochem Biophys Res Commun. 523(2), 487-492 (doi: 10.1016/j.bbrc.2019.12.079).
  • Yamakawa N, Vanbeselaere J, Chang LY, Yu SY, Ducrocq L, Harduin-Lepers A, Kurata J, Aoki-Kinoshita KF, Sato C, Khoo KH, Kitajima K, Guerardel Y. (2018) Systems glycomics of adult zebrafish identifies organ specific sialylation and glycosylation patterns. Nat Commun, 9(1):4647.
  • Fujito NT, Satta Y, Hane M, Matsui A, Yashima K, Kitajima K, Sato C, Takahata N, Hayakawa T. (2018) Positive selection on schizophrenia-associated ST8SIA2 gene in post-glacial Asia. PLoS One, 13(7): e0200278.
  • Yamaguchi S, Yoshimura A, Yasuda Y, Mori A, Tanaka H, Takahashi T, Kitajima K, Sato C. (2017) Chemical synthesis and evaluation of a disialic acid-containing dextran polymer as an inhibitor for the interaction between Siglec 7 and its ligand. Chem Bio Chem, 18: 1194-1203.
  • Abe C, Nishimura S, Mori A, Niimi Y, Yang Y, Hane M, Kitajima K, Sato C. (2017) Chlorpromazine increases the expression of polySia in human neuroblastoma cells and mouse prefrontal cortex. Int J Mol Sci, 18: pii: E1123.
  • Mori A, Hane M, Niimi Y, Kitajima K, Sato C. (2017) Different properties of polysialic acids synthesized by the polysialyltransferases ST8SIA2 and ST8SIA4. Glycobiology, 27: 834-846.
  • Wu D, Fujita A, Hamaguchi K, Delannoy P, Sato C, Kitajima K. (2017) Diverse subcellular localizations of the insect CMP-sialic acid synthetases. Glycobiology, 27: 329-341.
  • Ohira S, Yasuda Y, Tomita I, Kitajima K, Takahashi T, Sato C, Tanaka H. (2017) Synthesis of end-functionalized glycopolymers containing α(2,8) disialic acids by π-allyl nickel catalyzed coordinating polymerization and their interaction with Siglec-7. Chem Commun, 53: 553-556.
  • Go S, Go S, Veillon L, Ciampa MG, Mauri L, Sato C, Kitajima K, Prinetti A, Sonnino S, Inokuchi JI. (2017) Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem, 292: 7074-7051.
  • Senarai T, Vanichviriyakit R, Miyata S, Sato C, Sretarugsa P, Weerachatyanukul W, Kitajima K. (2017) Alpha-2 macroglobulin as a region-specific secretory protein in male reproductive tract and its dynamics during sperm transit towards female spermatheca in the blue crab. Mol Reprod Dev, 84: 585-595.
  • Hane M, Kitajima K, Sato C. (2016) Effects of intronic single nucleotide polymorphisms (iSNPs) of a polysialyltransferase, ST8SIA2 gene found in psychiatric disorders on its gene products. Biochem Biophys Res Commun, 478: 1123-1129.
  • Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, Okuda S, Sankaranarayanan S, Sato Y, Maruyama D, Iwai H, Garénaux E, Sato C, Kitajima K, Tsumuraya Y, Mori H, Yamaguchi J, Itami K, Sasaki N, Higashiyama T. (2016) The AMOR Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance. Curr Biol, 26: 1091-1097.
  • Hane M, Matsuoka S, Miyata S. Kitajima K, Sato C. (2015) Protective effects of polysialic acid on proteolytic cleavage of FGF2 and proBDNF/BDNF. Glycobiology, 10: 1112-1124.
  • Sumida M, Hane M, Yabe U, Shimoda Y, Pearce OM, Kiso M, Miyagi T, Sawada M, Varki A, Kitajima K, Sato C. (2015) Rapid trimming of cell surface polySia by exovesicular sialidase triggers release of preexisting surface neurotrophin. J Biol Chem, 290: 13202-13214.
  • Garénaux E, Kanagawa M, Tsuchiyama T, Hori K, Kanazawa T, Goshima A, Chiba M, Yasue H, Ikeda A, Yamaguchi Y, Sato C, Kitajima K. (2015) Discovery, primary and crystal structures, and capacitation-related properties of a prostate-derived heparin-binding protein WGA16 from boar sperm. J Biol Chem, 290: 5484-5501.
  • Harada Y, Sato C, Kitajima K. (2015) Sulfatide-Hsp70 interaction promotes Hsp70 clustering and stabilizes binding to unfolded protein. Biomolecules, 5: 958-973.
  • Kobayashi Y, da Silva R, Kumanogoh H, Miyata S, Sato C, Kitajima K, Nakamura S, Morita M, Hayashi F, Maekawa S. (2015) Ganglioside contained in the neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) fraction prepared from the detergent-resistant membrane microdomain of rat brain inhibits the phosphatase activity of calcineurin. J Neurosci Res, 93: 1462-1470.
  • Harada Y, Garenaux E, Nagatsuka T, Uzawa H, Nishida Y, Sato C, Kitajima K. (2014) Interaction of 70-kDa heat shock protein with glycosaminoglycans and acidc glycopolymers. Biochem Biophys Res Commun, 453: 229-234.
  • Nishimura S, Hane M, Niimi Y, Miyata S, Kitajima K, Sato C. (2014) Comparison of analytical methods to detect polysialic acid. J. Glycomics Lipidomics 4: 113.
  • Ikegami K, Liao X-H, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T. (2014) Tissue-specific post-translational modification allows functional targeting of thyrotropin. Cell Reports 9: 801-810.
  • Yabu M, Korekane H, Takahashi H, Ohigashi H, Ishikawa O, Hatano K, Nonomura N, Sato C, Kitajima K, Miyamoto Y. (2013) Occurrence of free deaminoneuraminic acid (KDN)-containing complex-type N-glycans in human prostate cancers. Glycobiology, 23: 634-642.
  • Hanashima S, Sato C, Tanaka H, Takahashi T, Kitajima K, Yamaguchi Y. (2013) NMR study into the mechanism of recognition of the degree of polymerization by oligo/polysialic acid antibodies. Bioorg Med Chem, 21: 6069-6076.
  • Nagae M, Ikeda A, Hane M, Hanashima S, Kitajima K, Sato C, Yamaguchi Y. (2013) Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid. J Biol Chem, 288: 33784-33796.
  • Akasaka M, Kato KH, Kitajima K, Sawada, H. (2013) Identification of novel isoforms of vitellogenin expressed in ascidian eggs. J Exp Zool Part B Mol Dev Evol, 320:118-128.
  • Ono S, Hane M, Kitajima K, Sato C. (2012) Novel regulation of fibroblast growth factor 2 (FGF2)-mediated cell growth by polysialic acid. J Biol Chem, 287: 3710-3722.
  • Guérardel Y, Chang LY, Fujita A, Coddeville B, Maes E, Sato C, Harduin-Lepers A, Kubokawa K, Kitajima K. (2012) Sialome analysis of the cephalochordate Branchiostoma belcheri, a key organism for vertebrate evolution. Glycobiology, 22: 479-491.
  • Hane M, Sumida M, Kitajima K, Sato C. (2012) Structural and functional impairments of polySia-NCAM synthesized by a mutated polysialyltransferase of a schizophrenic patient. Pure Appl Chem, 84: 1895-1906.
  • Takahashi K, Mitoma J, Hosono M, Shiozaki K, Sato C, Yamaguchi K, Kitajima K, Higashi H, Nitta K, Shima H, Miyagi T. (2012) Sialidase NEU4 hydrolyzes polysialic acids of neural cell adhesion molecules and negatively regulates neurite formation by hippocampal neurons. J Biol Chem, 287: 14816-14826.
  • Davies LR, Pearce OM, Tessier MB, Assar S, Smutova V, Pajunen M, Sumida M, Sato C, Kitajima K, Finne J, Gagneux P, Pshezhetsky A, Woods R, Varki A. (2012) Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage. J Biol Chem, 287: 28917-28931.
  • Kasekarn W, Kanazawa T, Hori K, Tsuchiyama T, Lian X, Garénaux E, Kongmanas K, Tanphaichitr N, Yasue H, Sato C, Kitajima K. (2012) Pig sperm membrane microdomains contain a highly glycosylated 15-25-kDa wheat germ agglutinin-binding protein. Biochem Biophys Res Commun, 426: 356-362.
  • Isomura R, Kitajima K, Sato C. (2011) Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem, 286: 21535–21545.
  • Miyata S, Yamakawa N, Toritama M, Sato C, Kitajima K. (2011) Co-expression of two distinct polysialic acids, α2,8- and α2,9-linked polymers of N-acetylneuraminic acid, in distinct glycoproteins and glycolipids in sea urchin sperm. Glycobiology, 21: 1596-1605.
  • Kambara Y, Shiba K, Yoshida M, Sato C, Kitajima K, Shingyoji C. (2011) Mechanism regulating Ca2+-dependent mechanosensory behaviour in sea urchin spermatozoa. Cell Struct Funct, 36: 69-82.
  • Inoue S, Sato C, Kitajima K.
(2010) Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells.
 Glycobiology, 20: 752-762.
  • Inoko E, Nishiura Y, Tanaka H, Takahashi T, Furukawa K, Kitajima K, Sato C. (2010) Developmental stage-dependent expression of an α2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology, 20: 916-928.
  • Sano K, Miyamoto Y, Kawasaki N, Hashii N, Itoh S, Murase M, Date K, Yokoyama M, Sato C, Kitajima K, and Ogawa H. (2010) Survival signals of hepatic stellate cells in liver regeneration are regulated by glycosylation changes in rat vitronectin, especially decreased sialylation. J Biol Chem, 285: 17301-17309.
  • Adachi T, Sato C, Kishi Y, Totani K, Murata T, Usui T, Kitajima K. (2009) Membrane microdomains from early gastrula embryos of medaka, Oryzias latipes are a plat form of E-cadherin and carbohydrate-mediated cell-cell interactions during epiboly. Glycoconjugate J, 26: 285-299.
  • Chang LY, Harduin-Lepers A, Kitajima K, Sato C, Huang CJ, Khoo KH, Guérardel Y. (2009) Developmental regulation of oligosialylation in zebrafish. Glycoconjugate J, 26: 247-261.
  • Kanato Y, Ono S, Kitajima K, Sato C. (2009) Complex Formation of a Brain-Derived Neurotrophic Factor and Glycosaminoglycans.
 Biosci Biotech Biochem, 73: 2735-2741.

総説・解説等

  • Sato C., Kitajima K. (2020) Polysialylation and disease. Mol Aspects Med. 100892 (doi: 10.1016/j.mam.2020.100892).
  • Kitajima K., Yamakawa N., Sato C, Guerardel Y. (2020) Systems glycomics of adult zebrafish (ゼブラフィッシュの全組織グライコミクス). Journal of Japanese Biochemical Society 92(3): 349-359 (doi:10.14952/SEIKAGAKU.2020.920349).
  • Sato C, Kitajima K. (2019) Sialic acids in neurology. Adv Carbohydr Chem Biochem. 76, 1-64 (doi: 10.1016/bs.accb.2018.09.003).
  • Sato C, Kitajima K. (2018) Sialic acids in neurology. Adv Carbohyd Chem Biochem, 75: in press.
  • Kitajima K. (2018) Identification of KDN-gangliosides. Methods Mol Biol, 1804: 429-435.
  • 佐藤ちひろ, 北島健. (2018) ポリシアル酸化(膜タンパク質; 特集 「タンパク質・核酸の分子修飾 Ⅲ. 細胞膜での分子修飾」)生体の科学 69巻5号 502-503.
  • 羽根正弥, 北島健, 佐藤ちひろ. (2017) ポリシアル酸転移酵素遺伝子ST8SIA2と精神疾患の関わり.(特集「糖鎖関連遺伝子から眺める疾患」佐藤ちひろ、岡島徹也 編)生化学, Vol.89, No 5: 634-643.
  • Sato C, Hane M, Kitajima K. (2016) Relationship between ST8SIA2, polysialic acid and its binding molecules, and psychiatric disorders. Biochim Biophys Acta, 1860: 1739-1752.
  • Kitajima K, Varki N, Sato C. (2015) Advanced technologies in sialic acid and sialoglycoconjugate anaysis. Top Curr Chem, 367: 75-103.
  • Colley K, Kitajima K, Sato C. (2014) Polysialic acid: Biosynthesis, novel functions and applications. Critical Reviews in Biochemistry and Molecular Biology, 49: 498-532.
  • Sato C, Kitajima K. (2013) Disialic, oligosialic, and polysialic acids: Distribution, biological functions, and related disease. J Biochem (Tokyo), 154: 115-136.
  • Sato C, Kitajima K. (2013) Impact of structural aberrancy of polysialic acid and its synthetic enzyme ST8SIA2 in schizophrenia. Front Cell Neurosci, 7: 61.
  • 佐藤ちひろ, 北島健. (2013) ポリシアル酸による神経機能の調節. 実験医学, 31巻 10号(増刊): pp. 26-33; 第三の生命鎖:糖鎖の機能と疾患(門松健治、遠藤玉夫、岡昌吾、北川裕之編集)羊土社.
  • 佐藤ちひろ, 北島健 (2011) ポリシアル酸の新機能の神経形成維持機構 生化学 83(3): 189-196.
  • Sato C, Kitajima K. (2011) New function of polysialic acid and its relationship to schizophrenia. Trends Glycsci. Glycotech, 23: 221-238.
  • Inoue S, Kitajima K, Sato C, Go S. (2011) Human KDN (deaminated neuraminic acid) and its elevated expression in cancer cells: mechanism and significance. Adv Exp Med Biol, 705: 669-678.

著書

  • Di Wu, Ken Kitajima (2022) 267. Enzyme assay of sialic acid 9-phosphate synthase (SPS). in GlycoPOD (Japan Consortium for Glycobiology and Glycotechnology, Ed.) in press.
  • Di Wu, Takahiro Nakagawa, Ken Kitajima (2022) 269. Enzyme assay of sialate-pyruvate lyase (SPL). in GlycoPOD (Japan Consortium for Glycobiology and Glycotechnology, Ed.) in press.
  • Di Wu, Ken Kitajima (2022) 270. Enzyme assay of CMP-Sialic acid synthetase (CMAS). in GlycoPOD (Japan Consortium for Glycobiology and Glycotechnology, Ed.) in press.
  • Chihiro Sato, Masaya Hane, and Ken Kitajima (2021) 5.17. Role of polysialic acid in schizophrenia. in 5. Glycans in Development, Health and Disease (ed. Taniguchi N.), Comprehensive Glycoscience, 2nd Ed. From Chemistry to Systems Biology (Editor-in-chief, Barchi J.) pp. 276-286, Elsevier.
  • Chihiro Sato and Ken Kitajima (2021) Chapter 5. Polysialic acid as an integrative decoder in nervous and reproductive systems. in Glycome: The Hidden Code in Biology (Ed., Dipak K. Banerjee), pp.107-140, May, 2021, nova science publishers, USA.
  • 北島健、佐藤ちひろ、門松健治、加藤晃一編. (2020) 「糖鎖生物学」名古屋大学出版会
    Sato C., Hane M., , and Kitajima K. (2021) Role of polysialic acid in schizophrenia. in 5. Glycans in Development, Health and Disease (ed. Taniguchi N.), Comprehensive Glycoscience, 2nd Ed. From Chemistry to Systems Biology (Editor-in-chief, Barchi J.), Elsevier.
  • Sato C. and Kitajima K. (2021) Chapter 5. Polysialic acid as an integrative decoder in nervous and reproductive systems. in Glycome: The Hidden Code in Biology (Ed., Dipak K. Banerjee), May, 2021, in production, nova science publishers, USA.
  • Kitajima K. (2019) Structural diversity and evolution of sialic acids. Trends Glycosci Glycotech. 31(181), E1-E3. (doi: 10.4052/tigg.1908.2E)
  • Kitajima K. (2019) 4.11 Genetically Modified Small Fish (Zebrafish and Medaka). In Glycoscience: Basic science to applications – Insights from the Japan Consortium for Glycobiology and Glycotechnology (Taniguchi N, Endo T, Hirabayashi J, Nishihara S, eds.), in press, Springer Nature Singapore Pte Ltd.
  • Kitajima K. (2018) 333 Genetically modified small fish (zebrafish and medaka). Glycoscience: Basic Science to Applications - Insights from the Japan Consortium for Glycobiology and Glycotechnology, (eds, Taniguchi N, Endo T, Hirabayashi J, Nishihara S) Springer, in press
  • 北島健. (2018) 3-44遺伝子改変:小型魚類 (3). 未来を創るグライコサイエンス -我が国のロードマップ- (日本糖鎖科学コンソーシアム (JCGG) 編)pp72-74, エム・ディー・オー, 東京
  • Sato C, Kitajima K. (2014) Polysialic acid. in the Glycoscience: Biology and Medicine (eds, Taniguchi, N, Honke, K, Fukuda, M, Yamaguchi, Y, and Angata, T.), Springer, Germany: pp519-528.
  • Hane M, Kitajima K, Sato C. (2014) Polysialyltransferase assay. in the Glycoscience: Biology and Medicine (eds, Taniguchi, N, Honke, K, Fukuda, M, Yamaguchi, Y, and Angata, T.), Springer, Germany: pp529-534.
  • Kanazawa T, Suzuki E, Miyata S, Sato C, Kitajima K. (2014) Flagellasialin. in the Glycoscience: Biology and Medicine (eds, Taniguchi, N, Honke, K, Fukuda, M, Yamaguchi, Y, and Angata, T.), Springer, Germany: pp883-890.
  • Akasaka M, Kato KH, Kitajima K, Sawada H. (2014) Chapter 12. Novel isoforms of vitellogenin expressed in eggs is a binding partner of the sperm proteases, HrProacrosin and HrSermosin, in the ascidian Halocynthia roretzi. in Sexual Reproduction in Animals and Plants. (eds., Hitoshi Sawada, Naokazu Inoue, and Megumi Iwano), Springer: pp.131-140.
  • Kitajima K, Sato C. (2014) Enzyme assay of polysialyltransferase. in GlycoScience Protocol Online Database (GlycoPOD), JCGGDB - http://jcggdb.jp/GlycoPOD/ protocolShow. action?nodeId=t67.
  • Sato C, Kitajima K. (2013) Carbohydrate analysis by gas-liquid chromatography. in GlycoScience Protocol Online Database (GlycoPOD), JCGGDB - http://jcggdb.jp/GlycoPOD/ protocolShow. action?nodeId=t223.
  • Kitajima K. (2013) N-acetylneuraminic acid 9-phosphatase (NANP). in Handbook of Glycosyltransferases and related genes (eds., Taiguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T), Springer. DOI: 10.1007/SpringerReference_332206.
  • Kitajima K, Sato C. (2011) The roles of carbohydrate binding in cell adhesion and inflammation. in Carbohydrate Recognition: Biological problems, methods, and applications (eds., Binghe Wang, Geer-Jan Boons), John Wiley and Sons. pp33-63.
  • Sato C, Yamakawa N, Kitajima K. (2010) Analysis of glycan-protein interaction by frontal affinity chromatography and Biacore. in Methods in Enzymology (ed, Fukuda M. in Glycomics), Elsevir science, 478: pp219-232.

呉 迪

原著論文(査読付き)

  • Wu D, Fujita A, Hamaguchi K, Delannoy P, Sato CKitajima K. (2017) Diverse subcellular localizations of the insect CMP-sialic acid synthetases. Glycobiology, 27: 329-341.
  • Jiang YY, Huang H, Wang HJ, Wu D, Yang R, Tashiro S, Onodera S, Ikejima T. (2011) Interruption of mitochondrial complex IV activity and cytochrome c expression activated O-mediated cell survival in silibinin-treated humanmelanomaA375-S2 cells via IGF-1R-PI3K-Akt and IGF-1R-PLCγ-PKCpathways. Eur J Pharmacol. 668(1-2), 78-87.
  • Jiang YY, Yang R, Wang HJ, Huang H, Wu D, Tashiro SI, Onodera S, Ikejima T. (2011) Mechanism of autophagy induction and role of autophagy in antagonizing mitomycin C-induced cell apoptosis in silibinin treated humanmelanomaA375-S2 cells. Eur J Pharmacol. 659(1), 7-14.
  • Zhang Y, Wu Y, Wu D, Tashiro S, Onodera S, Ikejima T.(2009) NF-kb facilitates oridonin-induced apoptosis and autophagy in HT1080 cells through a p53-mediated pathway. Arch Biochem Biophys. 489(1-2), 25-33.